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SUMMARY

A numerical method was developed for flows involving an interface between a homogenous fluid and a
porous medium. The numerical method is based on the lattice Boltzmann method for incompressible flow.
A generalized model, which includes Brinkman term, Forcheimmer term and nonlinear convective term,
was used to govern the flow in the porous medium region. At the interface, a shear stress jump that includes
the inertial effect was imposed for the lattice Boltzmann equation, together with a continuity of normal
stress. The present method was implemented on three cases each of which has a porous medium partially
occupying the flow region: channel flow, plug flow and lid-driven cavity flow. The present results agree
well with the analytical and/or the finite-volume solutions. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of flow systems, which is composed of porous media and homogenous fluids, has
attracted considerable attention since they occur in a wide range of the industrial and environmental
applications. Examples of practical applications are bioreactors with porous scaffolds, drug delivery
with porous microspheres, fuel cells, drying process, electronic cooling and ceramic processing.
To solve this type of problems, there are three different approaches: the domain scale approach,
the representative elementary volume (REV) scale approach and the pore scale approach.
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In the domain scale approach, the composite region is considered as a continuum and one set
of general governing equations is applied for the whole domain [1–5]. The explicit formulation
of boundary condition is avoided at the interface and the transitions of the properties between the
fluid and porous medium are achieved by certain artifacts [5]. Although this method is relatively
easy to implement, the flow behavior at the interface depends on how the code is structured [6].

In the REV scale approach, two sets of governing equations are applied to describe the flow in
the two regions and additional boundary conditions are applied at the interface to couple the two
sets of equations. The interfacial boundary conditions at the porous–fluid interface are summarized
in Table I.

The earliest study on the interfacial conditions is that by Beavers and Joseph [7]. In their
approach, the flows in a homogenous fluid and a porous medium are governed by the Navier–Stokes
and Darcy equations, respectively. The governing equations are of different orders in different
regions. Thus a semi-empirical slip boundary condition was proposed at the interface to couple the
equations. To make the governing equations of the same order, Neale and Nader [8] introduced the
Brinkman term in the Darcy equation for the porous medium. The continuity of both stress and
velocity was proposed at the interface. An analytical solution of this model was deduced by Vafai
and Kim [9]. Another interfacial boundary condition involving continuous stress was proposed by
Kim and Choi [10] who used the effective viscosity in the porous medium.

Later, Ochoa-Tapia and Whitaker [11, 12] deduced a stress jump condition at the interface based
on the non-local form of the volume-averaged method. The stress jump condition means that, at the
interfacial boundary, there is continuity of the volume-averaged velocity but the volume-averaged
velocity profile has a change of slope. One of the strong points of such a boundary condition is
that the jump is based on the stress but not on the velocity, and this has important consequences
for heat and mass transfer processes since it allows the convective transport to be continuous at the
fluid–porous interface boundary [11]. By adding the Forchheimer term to the Brinkman extended

Table I. Interface boundary conditions between porous medium and homogenous fluid domains.

Model Velocity Velocity gradient Reference

1
�ux
�y

∣∣∣∣
fluid

= �√
K

(ux |interface−〈u〉∞) [7]

2 〈u〉x |porous=ux |fluid �〈u〉x
�y

∣∣∣∣
porous

= �ux
�y

∣∣∣∣
fluid

[8, 9]

3 〈u〉x |porous=ux |fluid �e
� 〈u〉x
�y

∣∣∣∣
porous

= �
�ux
�y

∣∣∣∣
fluid

[10]

4 〈u〉x |porous=ux |fluid 1

�
�〈u〉x
�y

∣∣∣∣
porous

− �ux
�y

∣∣∣∣
fluid

= �√
K
ux

∣∣∣∣
interface

[11, 12]

5 〈u〉x |porous=ux |fluid 1

�
�〈u〉x
�y

∣∣∣∣
porous

− �ux
�y

∣∣∣∣
fluid

[13]

= �√
K
ux

∣∣∣∣
interface

+ �1
�
u2x

∣∣∣∣
interface
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Darcy equation for porous medium, Ochoa-Tapia and Whitaker [13] developed another stress jump
condition, which includes the inertial effects. Two coefficients appear in this jump condition: one
is associated with an excess viscous stress and the other is related to an excess inertial stress.

The implementation of the numerical methodology on the stress jump condition based on Ochoa-
Tapia and Whitaker [11, 12] can be found in the work of Silva and de Lemos [3]. They used
the finite-volume method with an orthogonal Cartesian coordinate system, which is not easy to
apply for complex geometries. The jump in shear stress was considered and there was no special
treatment on velocity derivatives. Alazmi and Vafai [14] proposed different types of interfacial
conditions between a porous medium and a homogenous fluid and found that interfacial conditions
have pronounced effects on the velocity field.

Recently, Yu et al. [15] developed a numerical method based on finite-volume method with
a collocated variable arrangement to treat the stress jump condition given by Ochoa-Tapia and
Whitaker [13], which includes the inertial effects. Yu et al. [15] used body-fitted and multi-block
grids to treat the fluid and porous regions. Their method is effective for the coupled problems in
homogenous fluid and porous medium regions with complex geometries.

Besides the computational fluid dynamics (CFD) models based on the momentum equations, a
relatively new approach to model porous medium flows is based on the lattice Boltzmann equations
(LBEs). Martys [16] used the lattice Boltzmann method (LBM) to model the flow through and over
a partial porous medium in a channel. The study assumed continuation of both velocity and shear
stress at the interface, by defining an effective viscosity term. The Stokes and Brinkman equations
were used for fluid and porous flow, respectively. Through a Chapmann–Enskog procedure, these
governing equations can be transformed into LBE. A body force term caused by the porous medium
was incorporated into the LBE as a linear first-order or second-order Hermite polynomials. Later,
Guo and Zhao [17] extend the study by using the generalized Navier–Stokes equation and Darcy–
Brinkman–Forchheimer equation for the fluid and porous medium, respectively. They also assumed
continuation of both velocity and shear stress at the interface using the effective viscosity. In their
study, the porosity was included into the equilibrium distribution function (EDF), and a body force
term was added to the LBE to account for the linear and nonlinear drag forces caused by the
porous medium.

The main advantage of the LBM is that it is capable of resolving micro-physical and micro-
chemical processes as demonstrated by Pan et al. [18] and Wang et al. [19]. At the pore scale,
there is no requirement for special treatment of the shear stress jump at the interface. However, the
LBM implementation at the pore scale for heterogenous porous media needs detailed geometric
information and very large lattice sizes [17–19]. The current computer resources may be sufficient
to resolve the pore scale for both the LBM and CFD in two-dimensional cases. However, in three-
dimensional cases especially for larger flow systems, the REV scale methods have an advantage.
As compared with the traditional CFD, the REV scale methods in the LBM framework have the
following strong points [16, 17]: easy to implement, computationally efficient, natural for parallel
computing and easy to treat complicated boundary. Thus, the present method is based on the REV
scale and implemented in the LBM framework for two-dimensional cases. For future work, it will
be useful if the present method can be demonstrated for three-dimensional cases.

In the existing LBMmodels for coupled flow with fluid and porous media, the assumed boundary
condition is based on the continuation of shear stress at the interface through the use of the effective
viscosity. However, as described earlier, there are other suitable boundary conditions, for example,
the stress jump conditions. It would be of interest to examine how the stress jump conditions can
be incorporated into the LBM model.
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The purpose of this paper is to extend the LBM for coupled problems of a fluid layer and
porous medium layer, by using the stress jump interfacial boundary conditions. The treatments
of both the velocity and distribution functions (DFs) at the interface are described. To study the
viscous and inertial effects, the lattice Boltzmann models [17] for Navier–Stokes equation and
Darcy–Brinkman–Forchheimer equation, with incompressibility assumption, are used in this paper.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

The governing equations for porous medium flow based on Darcy–Brinkman–Forchheimer
extended model are expressed in the vector form [15, 17]

∇ ·u=0 (1)

∇ ·
(uu

�

)
︸ ︷︷ ︸

convective term

=− 1

�
∇(�p)︸ ︷︷ ︸

pressure term

+ �e∇2u︸ ︷︷ ︸
Brinkman term

− ��

K
u︸︷︷︸

Darcy term

− �CF |u|√
K

u
︸ ︷︷ ︸

Forchheimer term

(2)

where u is the local average velocity vector (Darcy velocity); � is the mass density of the fluid; p
is the intrinsic-average pressure; � is the fluid kinematic viscosity; �e is the effective (Brinkman)
viscosity, which is set to be equal to � in this paper; � is the porosity; K is the permeability; and
CF is the geometric function that is expressed as [17]

CF=1.75/
√
150�3

The nonlinear Forchheimer term and linear Darcy term are drag forces caused by the presence
of the porous medium. The Brinkman term accounts for the force due to the solid boundary. The
local average p∗ and the intrinsic average pressure p can be linked by the Dupuit–Forchheimer
relationship p∗ =�p.

For steady incompressible viscous flow, the governing equations for a homogenous fluid region
can be expressed as

∇ ·u=0 (3)

∇ ·(uu)=−1

�
∇ p+�∇2u (4)

At the interface between the homogenous fluid layer and porous medium layer, additional
boundary conditions must be applied to couple the flows in the two regions. In the present study,
the stress jump condition [13] is applied

1

�

�ut
�n

∣∣∣∣
porous

− �ut
�n

∣∣∣∣
fluid

= �√
K
ut

∣∣∣∣
interface

+ �1u
2
t

�
(5)

where in the porous medium region, ut is the Darcy velocity component parallel to the interface
aligned with the direction t and normal to the direction n while in the homogenous fluid region ut
is the fluid velocity component parallel to the interface; � and �1 are the stress jump parameters.

Ochoa-Tapia and Whitaker [13] derived analytical expressions for parameters � and �1, which
indicate their dependence on permeability and porosity. They concluded that these two parameters
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are both of order one. Ochoa-Tapia and Whitaker [12] experimentally determined that � varies from
+0.7 to −1.0 for different materials with permeability varying from 15×10−6 to 127×10−6 in2

and average pore size from 0.016 to 0.045 in. No experimental data are available for �1. In the
present study, both � and �1 vary in the range from −1.0 to +0.7.

In addition to Equation (5), the continuity of velocity and normal stress prevailing at the interface
is given by

u|fluid=u|porous=uint (6)

�

�

�un
�n

∣∣∣∣
porous

− �
�un
�n

∣∣∣∣
fluid

=0 (7)

where in the porous medium region, un is the Darcy velocity component normal to the interface;
and in the homogenous fluid region, un is the fluid velocity component normal to the interface; the
subscript ‘int’ represents the interface. By combining with the appropriate boundary conditions of
the composite region, Equations (1)–(7) can be used to simulate the flow in a system composed
of a porous medium and a homogenous fluid.

3. LATTICE BOLTZMANN MODEL AND BOUNDARY CONDITIONS

3.1. Homogenous fluid region

In the LBM the fluid flow field is modeled by a single-particle DF fi . The quantity of fi (x, t,e)
represents the probability of finding a particle in the vicinity of x at time t that is moving with
velocity ei . For the two-dimensional case, the lattice Boltzmann BGK equation is expressed as
[16, 17, 20–23]

fi (x+ei�t , t+�t )− fi (x, t)=− fi (x, t)− f eqi (x, t)

�
(8)

where �t is the time increment, � is the non-dimensional relaxation time and f eqi is the corresponding
equilibrium state, which is the distribution that the system will evolve in the absence of forcing
gradients. The EDF is defined by [17]

f eqi =wi�

[
1+ e ·u

c2s
+ uu :(eiei −c2s I)

2c4s

]
(9)

where wi is the weight coefficient and cs is the sound speed. Here cs=c/
√
3,c=�x/�t and �x is

the lattice spacing. In present study, c is set to be 1. For the D2Q9 [17, 20, 21] model (Figure 1),
the discrete velocities (ex ,ey)i are defined as

ei =

⎧⎪⎪⎨
⎪⎪⎩

(0,0), i=0

(cos[(i−1)	/2],sin[(i−1)	/2]), i=1,2,3,4
√
2(cos[(i−5)	/2+	/4],sin[(i−5)	/2+	/4]), i=5,6,7,8

(10)
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Figure 1. Basic lattice for the D2Q9 lattice Boltzmann model.

The weight coefficients are given as

wi =

⎧⎪⎪⎨
⎪⎪⎩

4
9 , i=0

1
9 , i=1,2,3,4

1
36 , i=5,6,7,8

(11)

The macroscopic mass density � and velocity u are calculated from the DFs

�=
8∑

i=0
fi , �u=

8∑
i=0

fiei (12)

The pressure and the kinematic viscosity are defined as

p=�c2s , �=c2s (�− 1
2 )�t (13)

Using the Chapman–Enskog expansion [22], the momentum equation (4) can be recovered by
performing a Taylor series expansion of the particle DF (8).

3.2. Porous medium region

To solve the porous medium flow governed by the Darcy–Brinkman–Forchheimer extended model
(Equation (2)), Guo and Zhao [17] introduced the porosity into the EDF and added a force term
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Fi to the standard LBEs to account for the linear and nonlinear drag forces caused by the porous
medium. Their model is expressed as

fi (x+ei�t , t+�t )− fi (x, t)=− fi (x, t)− f eqi (x, t)

�
+�t Fi (14)

f eqi =wi�

[
1+ e ·u

c2s
+ uu :(eiei −c2s I)

2�c4s

]
(15)

where the total force term Fi is defined by

Fi =wi�

(
1− 1

2�

)[
1+ e ·F

c2s
+ uF :(eiei −c2s I)

�c4s

]
(16)

where F is the total body force due to the presence of a porous medium and other external force
fields; it is expressed as

F=− �v

K
u− �CF√

K
|u|u+�g (17)

where g is the body force due to external force; and the fluid velocity is defined as

�u=
8∑

i=0
ei fi + �t

2
�F (18)

The nonlinear equation (18) was solved by Guo and Zhao [17] and expressed as

u= v

c0+
√
c20+c1|v|

(19)

where v is an auxiliary velocity defined as

�v=
8∑

i=0
ei fi + �t

2
��g (20)

The two parameters c0 and c1 in Equation (19) can be calculated by

c0= 1

2

(
1+�

�t
2

�

K

)
, c1=�

�t
2

CF√
K

(21)

Through the Chapman–Enskog expansion [17] the momentum equation (2) can be deduced from
the DF (14).

3.3. Interfacial boundary condition treatment

The interfacial boundary condition must be chosen appropriately to couple the two LBEs as given
by Equations (8) and (14). In the present study, the stress jump condition is used. For traditional
discretization methods, such as finite-difference and finite-volume methods, the momentum flux
is calculated by discretizing of the velocity field using finite difference. Thus the implementation
of appropriate velocity boundary conditions automatically guarantees correct momentum flux near
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the boundary. However, in the LBM, only the equations for fi are solved and the velocity boundary
conditions are not enough to guarantee the strain field [24]. Thus additional boundary conditions
for fi must be correctly implemented to ensure correct momentum flux near boundary.

Figure 1 shows a basic lattice for D2Q9 lattice Boltzmann model with lattice layer (E–O–A) just
at the interface, lattice layer (D–C–B) at one lattice inside of the fluid and lattice layer (F–G–H)
at one lattice inside the porous medium. Consider the stress jump condition as a case, the normal
velocity gradients at the interface can be calculated by using the backward second-order difference
approximation for porous side and forward second-order difference approximation for fluid side:

�u
�y

∣∣∣∣
porous

= 3uint−4uint−1+uint−2

2�y
,

�v

�y

∣∣∣∣
porous

= 3vint−4vint−1+vint−2

2�y
(22)

�u
�y

∣∣∣∣
fluid

= −3uint+4uint+1−uint+2

2�y
,

�v

�y

∣∣∣∣
fluid

= −3vint+4vint+1−vint+2

2�y
(23)

where uint is the interfacial velocity in x-coordinate; vint is the interfacial velocity in y-coordinate;
the subscript ‘int’ represents the lattice points at the interface, ‘int−1’ and ‘int−2’ represent the
lattice points, which are one lattice and two lattices below the interface, respectively; ‘int+1’ and
‘int+2’ represent the lattice points, which are one lattice and two lattices above the interface,
respectively; and �y is the lattice spacing. By combining Equations (5), (7), (22) and (23)

1

�

3uint−4uint−1+uint−2

2�y

∣∣∣∣
porous

− −3uint+4uint+1−uint+2

2�y

∣∣∣∣
fluid

= �√
K
uint+ 1

�
�1u

2
int (24)

1

�

3vint−4vint−1+vint−2

2�y

∣∣∣∣
porous

− −3vint+4vint+1−vint+2

2�y

∣∣∣∣
fluid

=0 (25)

The interfacial velocities uint and vint can be calculated from Equations (24) and (25), respectively.
Thus the interfacial boundary condition can be treated as the Dirichlet boundary condition (first
type). In the present study, the Dirichlet boundary conditions are solved with the non-equilibrium
extrapolation method that was proposed by Guo et al. [25]:

fi (xint)− f̄ eqi (xint)= fi (x f )− f̄ eqi (x f ) (26)

where xint is a lattice node on the interfacial boundary and x f is its nearest neighboring node
along the discrete velocity ei . That is, x f =xint+ei�t ; and the EDF at xint is proposed as

f̄ eqi (xint)=wi�(x f )

[
1+ ei ·u(xint)

c2s
+ u(xint)u(xint) :(ei ei −c2s I)

2�c2s

]
(27)

where �(x f ) is known and interfacial velocity u(xint) is calculated from Equations (24) and (25).
For channel flow with periodic boundary condition in inlet and outlet, the periodic boundary

condition is applied to calculate f1, f5 and f8 at the interface fin1= fout1, fin5= fout5 fin8= fout8;
where the subscript ‘in’ and ‘out’ represent inlet and outlet, respectively. In the case of cavity
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flow, the no-slip boundary conditions are used for f1, f5 and f8 at the left end of interface. Similar
boundary conditions can be applied for the right end of the interface.

3.3.1. Calculation procedure

1. The computation of the flow field is started by assuming initial values for all the parameters.
2. The EDFs for the flow field, including those at the interface, are calculated. Then the collision

step is carried out for all nodes, except the interfacial nodes where the velocity boundary
conditions are enforced (in step 4) for the EDFs. After the collision step, the streaming step
is executed for all nodes.

3. The macroscopic parameters, such as densities and velocities, are calculated from the updated
DFs.

4. The jump conditions are implemented by using Equations (24) and (25) to calculate the
updated interfacial velocities. The velocities and DF boundary conditions are enforced,
including the updated interfacial velocities.

5. Convergence is checked by using the following condition:

∑
i j |u(n)

i j −u(n−100)
i j |∑

i j |u(n)
i j |

�10−9 (28)

where u(n)
i j =u(xi , y j ,n�t). Equation (28) represents the sum of the non-dimensional error

over total grid nodes. If Equation (28) is satisfied, the calculation is stopped and the results
are outputted; if not, steps 2–5 are repeated till Equation (28) is satisfied.

4. RESULTS AND DISCUSSION

4.1. Channel flow partially filled with porous medium

The physical domain is shown schematically in Figure 2. It consists of a planar channel whose
upper region of height H1 is filled with homogenous fluid and lower region of height H2 is filled
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Figure 2. Schematic of flow in a channel partially filled with saturated porous medium.
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with a fluid-saturated porous medium region. A case of height ratio H2/H1=1 is considered. The
flow is assumed laminar and the driving force is a constant pressure gradient.

There are several different ways to implement the driving force. In the present study, the driving
force G=−dp f /dx is included in the lattice Boltzmann model by adding a first-order Hermite
polynomials to the DFs [16, 21]:

f̃i (xt , t)= fi (x, t)+ 
i Geix
c2s

for homogenous fluid flow (29)

f̃i (xt , t)= fi (x, t)+ �
i Geix
c2s

for porous medium flow (30)

where f̃i (xt , t) represents the DF after including the driving force. The main dimensionless param-
eters are U =�u/GH2

1 , Darcy number Da=K/H2
1 and Y = y/H1. Both numerical and analytical

solutions [15] are presented for validation of the present numerical implementation.
To guarantee grid-independent solution, a sufficiently fine mesh should be used. For the pressure-

driven flow (Figure 2), the grid independence study (Figure 3) shows that a mesh of 121 grids in
the y-direction is sufficient. For all of the channel flow cases in this paper, the driving force G is
set to be 10−4, and fluid kinematic viscosity � is set to be 2×10−3. The grid independence study
shows that the present results are in good agreement with the analytical results.

Figure 4(a)–(c) shows the velocity profiles at different Da, porosity and stress jump coefficient,
respectively. The comparison shows that the present numerical results are in good agreement with
the analytical solutions at various Da, porosities and stress jump coefficients. It is found that Da
has much effect on the velocity profiles. The velocity increases significantly with increasing Da
and proportionately more so for the porous side. The stress jump coefficient � has slight effect on
the velocity profiles. The effect of the stress jump coefficient �1 is negligible. This is attributed
to the small Reynolds number and Darcy number. Thus the inertial effect is negligible, especially
since the flow is parallel. The porosity has very little effect on the velocity profiles.
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Analytical results
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210Da −= ;

410G −= ;

Figure 3. Effect of grid size on velocity profile.
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Figure 4. The u velocity profile under different flow conditions: (a) Darcy number effect; (b) stress jump
coefficients � and �1 effect; and (c) porosity effect.
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Figure 5. Schematic of flow in a channel with a porous plug.
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Figure 6. The velocity distributions along the centerline at (a) Da=10−2 and (b) Da=10−3; other
parameters are Re=1, �=0.7, �=0, �1=0, �x1=�x3=3H and �x2=2H .
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Figure 7. The velocity distribution along the centerline at different stress jump coefficients with Da=10−2,
Re=1, �=0.7, �x1=�x3=3H and �x2=2H .
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4.2. Flow through a channel with a porous plug

The physical domain of the flow through a channel with a porous plug is shown schematically in
Figure 5, which is the same as that by Gartling et al. [26], Betchen et al. [27] and Yu et al. [15]. In
this problem the dominating flow is perpendicular to the interface. Different from the first problem,
the main dimensionless parameters are U =u/ua , X = x/H , Reynolds number Re=�uaH/� and
Darcy number Da=K/H2, where ua is the mean velocity. The Poiseuille flow velocity profile is
set in the inlet based on the mean velocity.

The numerical results for the case of Da=10−2 and 10−3 are shown in Figure 6, where the
centerline U velocity along x-direction are presented. The other parameters for the flows illustrated
in Figure 6 are Re=1, �=0.7, �=0 and �1=0. The lengths are set to be �x1=�x3=3H and
�x2=2H . In the present study, 121 grids in the y-direction are used and the preliminary numerical
tests confirmed that the solutions are grid independent.

Figure 6 shows that the velocity drops rapidly in the porous plug, especially for the case with
the low Darcy number. The flow field is predominantly axial over most of the homogenous fluid
and porous medium regions, but it is two-dimensional in the region near the interface between the
homogenous fluid and the porous medium. The present results are in good agreement with those
of Gartling et al. [26], Betchen et al. [27] and Yu et al. [15].

The centerline velocity distributions at the different stress jump coefficients � and �1 are shown
in Figure 7. It is seen that the two coefficients have negligible effects as the dominant flow direction
is perpendicular to the interface. The present results agree well with those of previous studies
[15, 26, 27].

4.3. Lid-driven cavity flow partially filled with porous medium

Figure 8 is the schematic diagram of flow in a lid-driven square cavity, which is three-quarter
filled with porous medium. The fluid kinematic viscosity � is set to be 2×10−3. The governing

Porous Medium 

Interface

u= 0u , v=0 

u=0, v=0 

u=
0,

 v
=

0 
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0 ,

 v
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0 

H

x

y

H/4

3H/4

Figure 8. Schematic of flow in a square cavity partially filled with porous medium.
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dimensionless parameters are Reynolds number based on lid velocity u0, Re=u0H/� and is
given as a constant, Darcy number Da=K/H2, U =u/u0, V =v/u0, X = x/H and Y = y/H ,
where H is the square cavity height. The lid velocity u0 can be calculated from the definition of
Reynolds number. The mesh size of 121×121 is used, based on the previous grid independence
studies. The stress jump conditions are implemented for x-component velocity U as given in
Equation (5). And the stress continuity conditions are used for y-component velocity V as given in
Equation (7).

Figure 9(a) and (b) shows the velocity profiles at different Da. It can be seen that there is more
flow passing through the porous medium region with larger Darcy number. The interfacial velocity
V increases with increasing Da. It shows that Darcy number has much effect on velocity profiles.
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Figure 9. Velocity profiles at different Darcy number; symbols represent LBM solutions and solid lines
represent finite-volume solutions: (a) centerline velocity U along y-direction and (b) interfacial velocity

V along x-direction; other parameters are Re=1, �=0.7, �=0 and �1=0.
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The comparison shows that the present results are in good agreement with the finite-volume
results.

The velocity profiles at different porosity are shown in Figure 10(a) and (b). It shows that
porosity has very slight effects on velocity profiles. Figure 11(a) and (b) shows the velocity profiles
at different stress jump coefficients. It can be seen that jump coefficient � has slight effect on the
x-component velocity U . However, it has negligible effect on the y-component velocity V . The
effect of the jump coefficient �1 is negligible for both U and V . This may be due to the reason
that for small Reynolds number and Darcy number used in present study, the inertial effects are
negligible.
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Figure 10. Velocity profiles at different porosity; symbols represent LBM solutions and solid lines represent
finite-volume solutions: (a) centerline velocity U along y-direction and (b) interfacial velocity V along

x-direction; other parameters are Re=1, Da=10−2, �=0 and �1=0.
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Figure 11. Velocity profiles at different stress jump coefficients; symbols represent LBM solutions and
solid lines represent finite-volume solutions: (a) centerline velocity U along y-direction and (b) interfacial

velocity V along x-direction; other parameters are Re=1, �=0.7 and Da=10−2.

5. CONCLUSION

In this paper the LBE was extended to flow systems with regions of homogenous fluid and
porous medium coupled by the stress jump interfacial boundary condition of Ochoa-Tapia and
Whitaker [11–13]. A treatment of the velocity functions and DFs at the interface was described.
The interfacial velocity was calculated with the difference approximation of the velocity gradient
derivatives in the stress jump condition. Then the updated interfacial velocity was used to update
the DFs at the interface.

This interfacial treatment was applied to simulate coupled flow problems such as channel flow,
porous plug and cavity flow. These cases cover a variety of situations where the major flow is
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parallel, perpendicular and oblique to the interface. The stress jump parameter � has more effect
when the velocity is parallel to the interface. The results are in consistent with the analytical and/or
finite-volume results.
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